

D4i – Data and Power to Connect!

Sree Venkit

System Architect for Connected Lighting, Signify

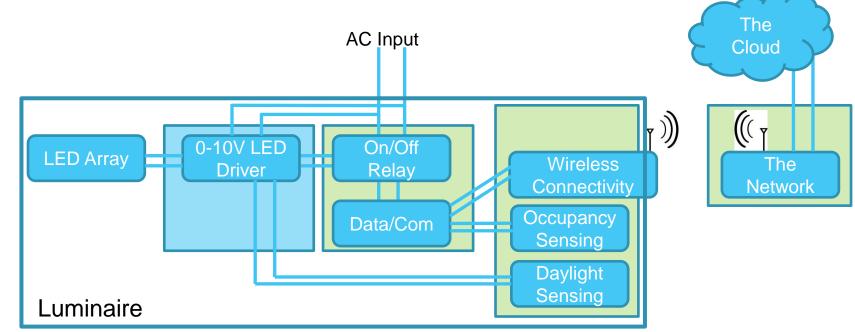
Kevin Fitzmaurice, LC

Principal Engineer,
 Lighting and Smart Services, Georgia Power

Michael Davidson

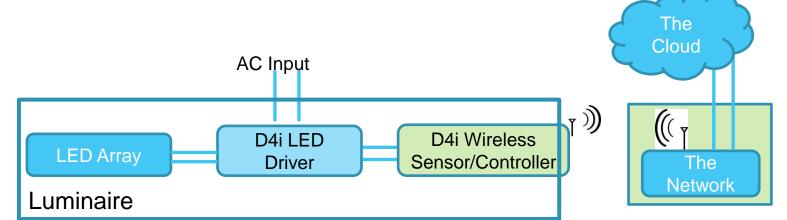
System Architect, Synapse Wireless

All presentations from the DALI Alliance seminar at Lightfair 2021 are available here


What is "Connected Lighting"?

Smart lighting fixtures will drive enhanced energy saving and make Lighting a key driver in the "Internet of Things"

- Lighting is everywhere where people are
- Focus will gradually shift from energy savings to data insights leading to new uses:
 - Occupancy/space management
 - Building automation / control (HVAC, security, elevators)
 - Retail engagement
- Lighting provides an opportunity for human centric data collection
 - Luminaires become the collecting points for local information.....data nodes......Luminaire OEMs uniquely positioned to be the carrier


Connected Luminaire Architecture:

Analog 0-10V:

- Complex with many components
- Limited standardization
- No data capability from LED driver
- Reduced reliability AC mains connection to multiple components

0-10V Dim2OFF with Aux is in between, but still no data from LED driver.

Digital D4i:

- Simple with few components
- Standardized connection for power and digital data from LED driver
- High reliability AC mains to the LED driver only

D4i overview

- D4i is an extension of DALI-2 certification
- D4i components have a compulsory set of features
 - Based on power-supply and data specifications from DiiA
- All D4i LED drivers provide luminaire, energy & diagnostics data
- D4i enables DALI inside intelligent, IoT-ready luminaires
- D4i simplifies addition of sensors and communication devices (NLC) to luminaires
- D4i enables plug-and-play interoperability when combined with a connector system
 - e.g. Zhaga Book 18 & 20 or NEMA/ANSI C136.41

DiiA Specifications – Published

The following specifications can be downloaded from the DiiA website

Specification	Name	Version	Certification?
Powe			
DALI Part 150	AUX Power Supply	v1.1, Oct 2019	✓
DALI Part 250	Integrated Bus Power Supply	v1.1, Oct 2019	✓
Data s			
DALI Part 251	Luminaire Data	v1.1, Oct 2019	✓
DALI Part 252	Energy Data	v1.1, Oct 2019	✓
DALI Part 253	Diagnostics Data	v1.1, Oct 2019	✓
Speci			
DiiA Part 351	Luminaire-mounted Control Devices	v1.0, Oct 2019	✓

DiiA power-supply specifications

Diginal Buruncation Interface Alliance DIIA specification 50/ For 31: - Newsy text Interess Discovery of the State of t

DALI Part 250 – Integrated Bus Power Supply

- For control gear (e.g. LED drivers) with an integrated DALI bus power supply (PSU)
 - Suitable for powering some devices such as sensors on the bus
- PSU can be enabled or disabled allowing use in systems with multiple bus PSUs
- For D4i certification, Part 250 must be included, with the bus PSU enabled by default

DALI Part 150 – AUX Power Supply

- 24V DC power supply
- Can be built into control gear, or designed as a stand-alone product
- Suitable for devices with higher-power requirements
 - e.g. City-wide wireless transceivers
- Provides 3W average, 6W peak

DALI data specifications for control gear

Chapter Supremation interfece Alliance

DIA separation interfece Alliance

DIA separation interfece interfece

South Feed 32 - New York Interfece

South Feed 32 - New York Interfece

Onder 2018

- Data for enhanced asset management & performance monitoring
- Data storage in DALI memory banks, with standardized format & locations

Luminaire Data

DALI Part 251 – Luminaire Data

- Information about the luminaire (e.g. ID code, light output, CCT & CRI, light distribution etc) can be stored in the control gear
- Enables asset management

Energy Data

DALI Part 252 – Energy Reporting

Provides real-time power & energy usage for control gear

Diagnostics Data

DALI Part 253 – Diagnostics & Maintenance

- Operating data for control gear and lamps, including failure conditions, run-time data
- Enables predictive maintenance

Benefit Summary – D4i Drivers vs 0-10V

Benefit	Driver Feature	Feature Description	0-10V	0-10V Dim2OFF w/Aux	D4i
Ease of maintenance and Asset Management	Asset management via DALI scenes	Use limited space in DALI scenes for unique vendor code and manual lookup tables to correlate to specific fixture			√
	Asset management via MB1	Standardized method for storing vendor specific information in the driver; No lookup table required.			√
	Memory Banks with Diagnostics Data	Data such as voltages, surges, currents and thermals made available back through NLC for analysis			√
Ensure/monitor energy savings	Memory Banks with Power/Energy metering Data	Measured power and energy data. Supports DLC NLC QPL listing and thus qualify for utility rebates.			✓
High reliability	Integrated switching, and Low Voltage power supply	Eliminates mains protection and relay. No need for separate low voltage supply for the NLC.		√	✓
Easy integration	Built-in DALI Bus Power Supply	Simple two wire connection from the driver to the NLC node to supply power and data			✓
System interoperability assurance	D4i Certification program	Testing assures DALI communication protocol robustness and D4i specified power and data availability to NLC.			✓

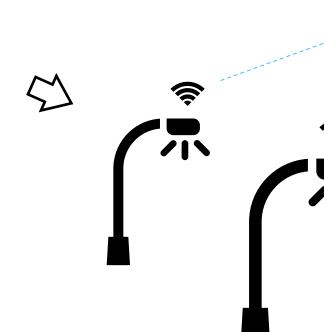
Part 351 for control devices

Digus Bunnination tolerface Alliance

DIIA specification

Diring and the state of t


- DiiA Part 351 Luminaire-mounted control devices
 - Examples: Sensors, wireless communication nodes
- Control devices can be bus-powered or externally powered (e.g. by AUX supply).
- Part 351 specifies four types of control device (types A-D)
 - Covering both indoor and outdoor applications
 - Including devices such as wireless network lighting controllers (NLCs), photocells (light sensors), movement sensors and timers
- Specification includes:
 - Requirements for power consumption
 - A mechanism to arbitrate between multiple application controllers
 - A memory bank definition for multi-master devices
- Part 351 is mandatory for D4i certification



DALI data: An outdoor lighting example

Network

In the factory:
Luminaire data is programmed into drivers.

In the field:

Automated commissioning

- When installed, luminaire can automatically transfer data to remote network
- Reduces human error, saves installation time and cost
- Operator has a full map of asset information

During operation:

Performance monitoring

 Energy usage data can be used e.g. for billing

During operation:

Predictive maintenance

- Diagnostics data allows network operator to anticipate need for maintenance
- Repair team has knowledge of location and type of fixture

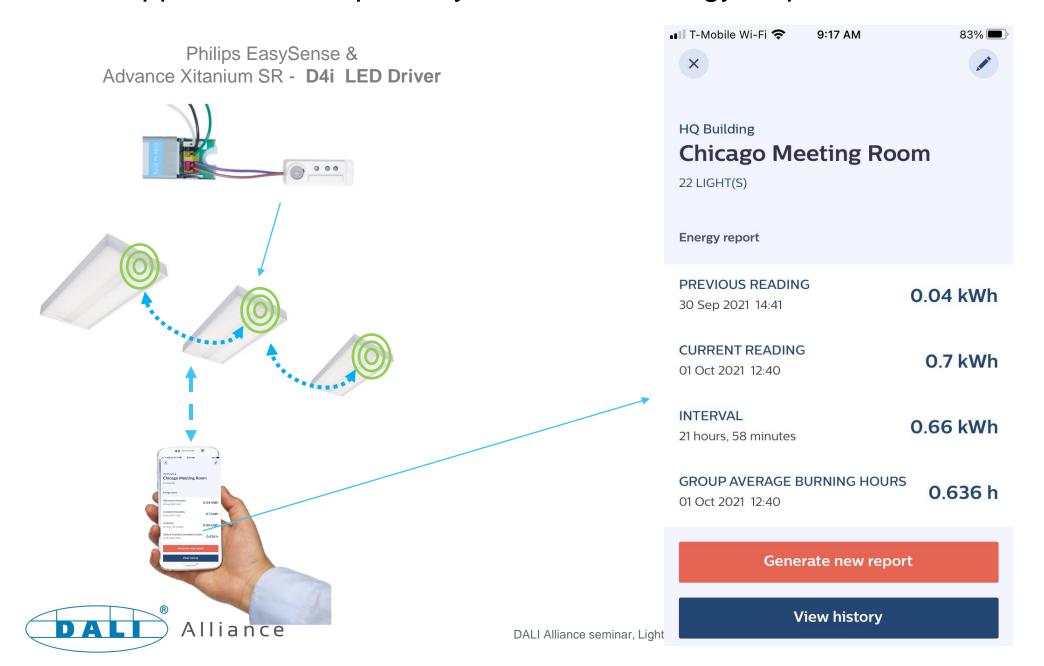
Technology standards driving connected lighting adoption

Introduced North America
standard for energy reporting,
diagnostics, and asset
management for LED drivers
(C137.4)

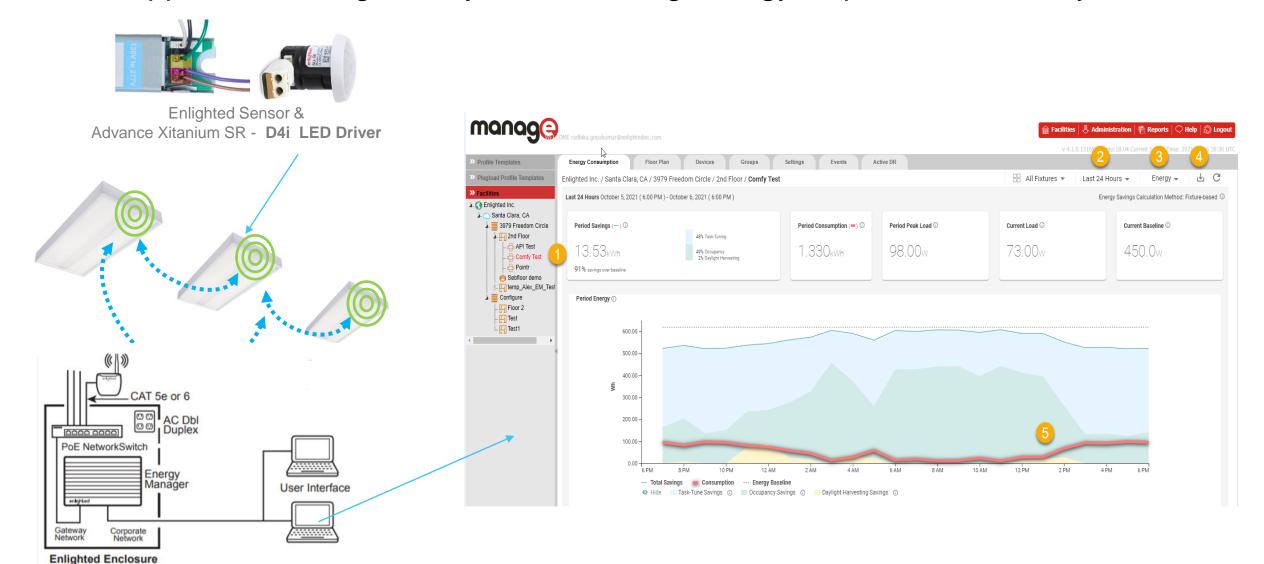
for energy reporting, diagnostics, and asset management for LED drivers (D4i)

Energy monitoring is a required interior/exterior NLC system capability (V4.0)

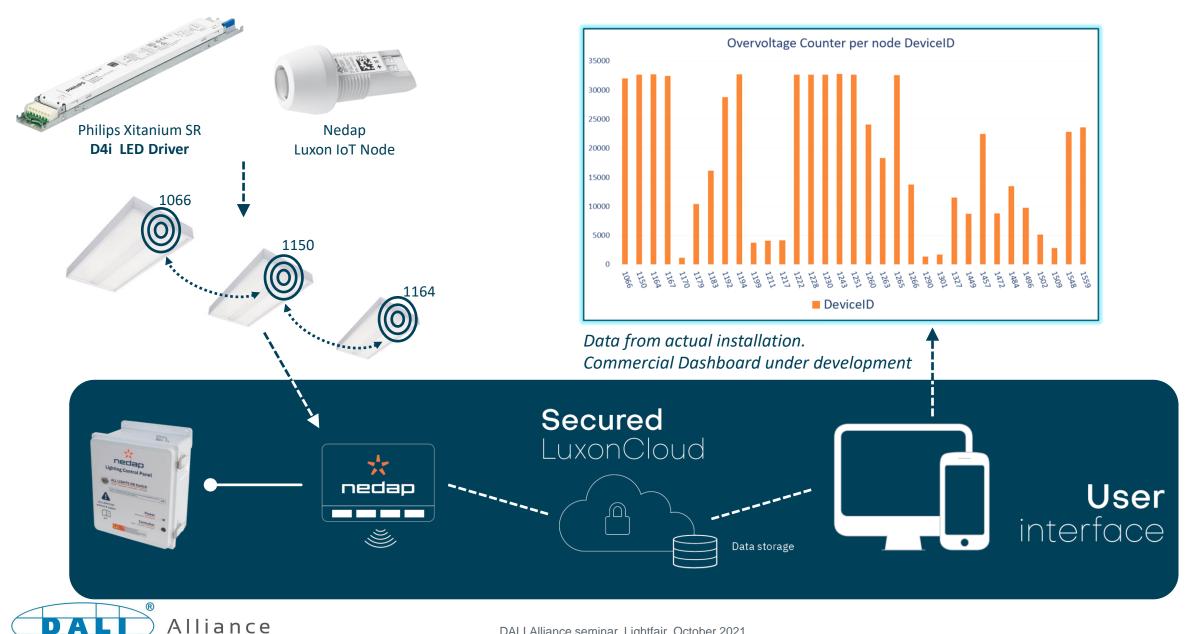
- Standardize luminaire data format (e.g. luminaire asset data)
- Encourage new usage of data
- Accelerate adoption of connected lighting
- Greater design flexibility in lighting control



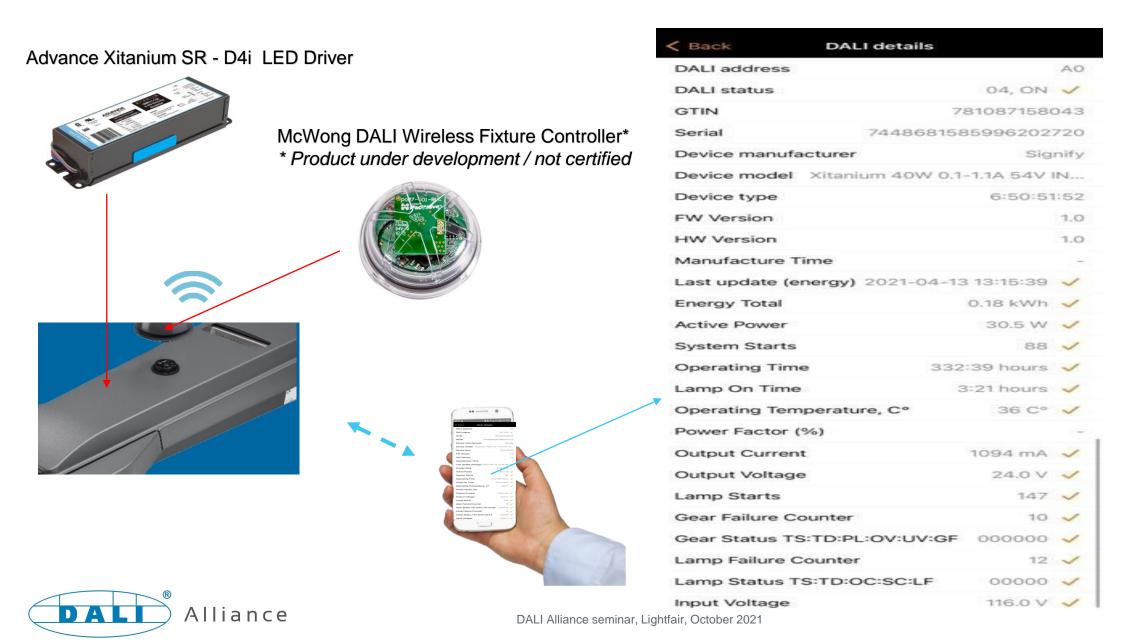
Application Examples: Benefits of D4i/DALI-2 Data

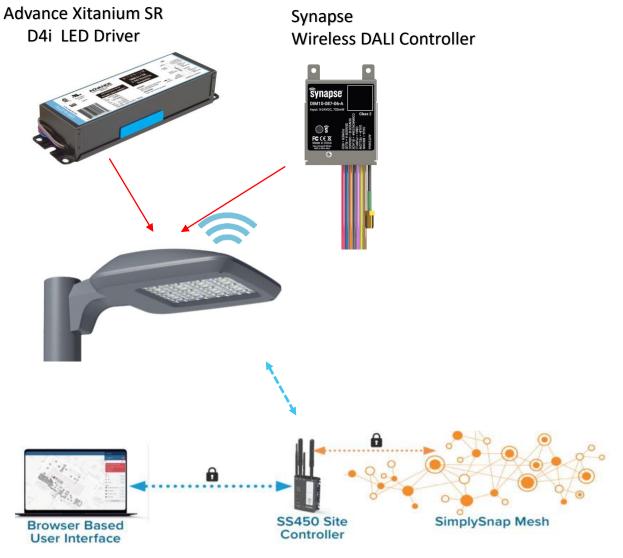

- Next few slides show application examples from several Lighting Control system manufacturers
- Some of the controllers/systems are still under development as noted.
- Controllers may not be D4i/DALI-2 certified.

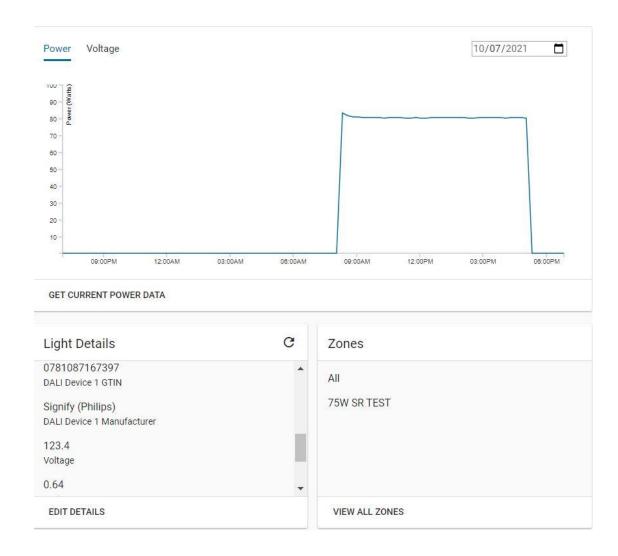
Indoor Application: Philips EasySense with Energy Report for a Room



Indoor Application: Enlighted System featuring Energy Report for full facility




Indoor Application: Nedap System featuring Over-Voltage Diagnostics



Outdoor Application: Comprehensive set of Luminaire data using McWong Wireless System

Outdoor Application: Luminaire asset & power data using Synapse system

D4i – Data and Power to Connect!

Sree Venkit

System Architect for Connected Lighting, Signify

Kevin Fitzmaurice, LC

Principal Engineer,
 Lighting and Smart Services, Georgia Power

Michael Davidson

System Architect, Synapse Wireless

All presentations from the DALI Alliance seminar at Lightfair 2021 are available here

Earning customer loyalty by delivering exceptional value through lighting and smart services.

Future Proofing and Interoperability from a Utility's Perspective

Kevin Fitzmaurice - Principal Engineer - Georgia Power

Guided by CULTURE

Vision

To be the most valued and trusted utility lighting and smart solutions provider.

Mission

Focused on

CUSTOMER

To earn customer loyalty by delivering exceptional value through lighting and smart services.

Guiding Principles

Georgia Power – What do we do?

<u>Investor owned</u> utility (IOU) providing electricity to 2.6 million customers

Own, operate and maintenance \approx 900,000 outdoor luminaires

- ≈350,000 roadway luminaires
- ≈550,000 area luminaires

Provide "Smart Services" such as:

- Monitoring and control of outdoor luminaires
- Video and license plate recognition (LPR)
- Gun shot detection
- Environmental monitoring
- Pedestrian and vehicle counting
- Small cellular (4G/5G) on lighting poles

Georgia Power – What are we doing?

Converting ≈900,000 luminaires to LED with networked lighting controllers (NLC)

Monitoring LED luminaires with a wireless network and central management system

Utilizing digital communication protocols (e.g., DALI, DALI-2, D4i) in our LED luminaires

Using sensors for additional functionality

Actively participating on lighting standards committees (e.g., ANSI, IES)

Why do we use digital communication protocols and which ones do we use?

To provide two-way communications between LED drivers, sensors and networked lighting controllers (NLCs)

DALI, DALI-2 and D4i were selected because they are established protocols with published standards, have a positive track record and provide the functionality needed

What about sensor interfaces?

Georgia Power needs standardized sensor interfaces

These interfaces need to be locking type for easy installation or removal of sensors

These interfaces are needed so Georgia Power can "future proof" its luminaires

Georgia Power selected the 7-pin ANSI C136.41 control receptacle on the top of the luminaire for NLCs or PCs

Georgia Power selected the 4-pin ANSI C136.58 (Zhaga Book 18) interface on the bottom of the luminaire for sensors

Do these standardized control and sensor receptacles meet Georgia Powers' needs?

Yes!

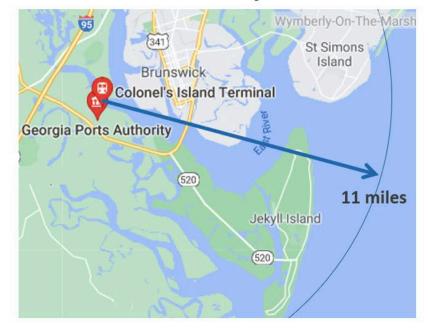
Provides a standardized environment for digital communication between our digital drivers, sensors and networked lighting controllers (NLCs)

It allows Georgia Power to "future proof" its luminaires

It allows for easy installation and removal of controls and sensors

It provides a standard framework for manufacturers of drivers, sensors, controllers and luminaires to use for design and production of the tools the lighting industry and Georgia Power need today

Let's conclude with a case study



Georgia Ports Authority - Port of Brunswick, GA

Photo by Georgia Ports Authority

The port on Colonel's Island is less than 11 miles from turtle sanctuaries on Jekyll Island

Google Maps

Case Study: Georgia Ports Authority

Georgia Power installed Cooper Lighting Solutions Navion LED luminaires with Signify sensor ready (SR) drivers, Legrand Wattstopper presence sensors and Telensa NLCs

This configuration provides low lumen output (30% of full) during nighttime hours unless activity (presence) is detected. Activity triggers 100% lumen output until there is 15 minutes of inactivity when the power reduces back to low output (30%)

This assembly provides automatic low or high lumen output, remote monitoring, energy metering and remote operational control

The customer reduces sky glow near a sea turtle nesting area and reduces energy usage

D4i – Data and Power to Connect!

Sree Venkit

System Architect for Connected Lighting, Signify

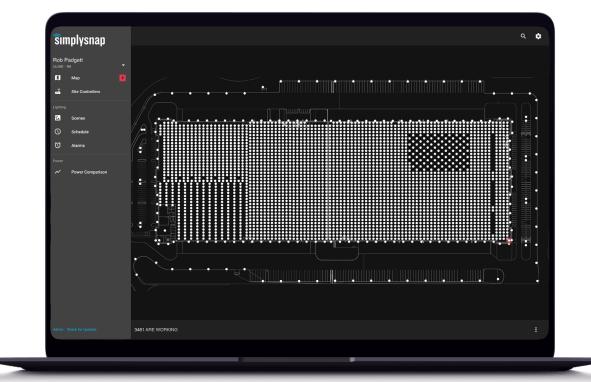
Kevin Fitzmaurice, LC

Principal Engineer,
 Lighting and Smart Services, Georgia Power

Michael Davidson

System Architect, Synapse Wireless

All presentations from the DALI Alliance seminar at Lightfair 2021 are available here


What else can DALI-2 and D4i Provide?

- What applications can we Specify for D4i?
- Does D4i Help with Energy Audits?
- Can D4i Help save Energy?

D4i Brings the Information that lives on the DALI-2/D4i LED Driver Front and Center —

Asset Info, Power Info, Power Saving Strategies, Temperature, Voltage Spikes, and Diagnostics

COMPLETE CONTROL

- Zoning
- Task Tuning
- Flexible Schedules

ENERGY SAVINGS

- Daylight Harvesting
- High-end Trim
- Scenes and Lighting Behaviors

MONITORING

- Fault Detection
- Notifications
- Power and Cost
- Power Saving Strategies

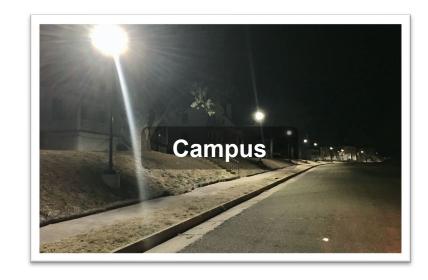
D4i AVAILABLE WITH OVER 70 LUMINAIRE MANUFACTURES

D4i comes in Different Shapes & Sizes

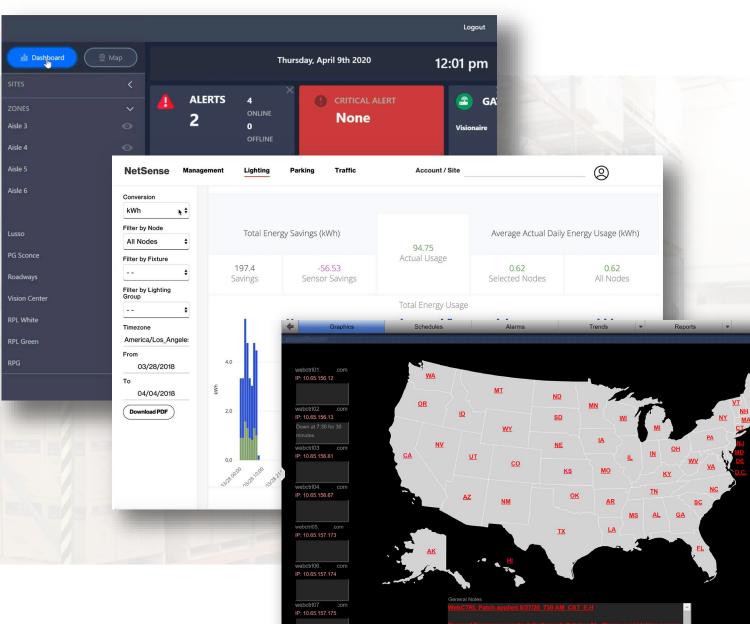
D4i AVAILABLE WITH OVER 70 LUMINAIRE MANUFACTURES

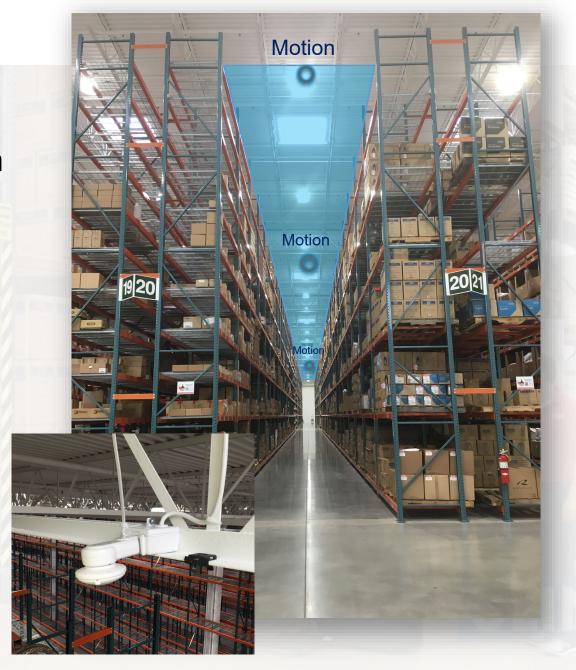
D4i comes in Different Shapes & Sizes

CREE & LIGHTING

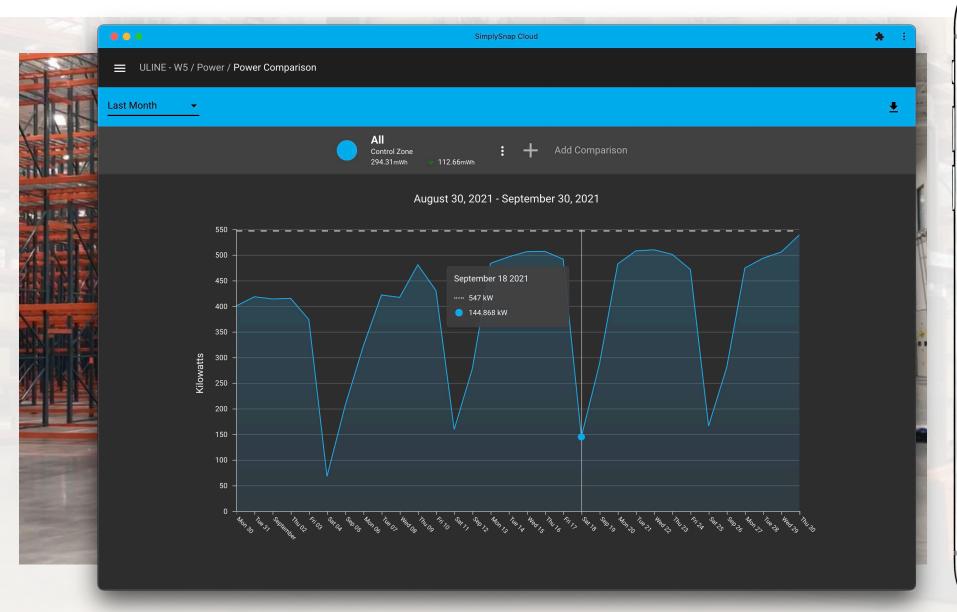


APPLICATIONS




INTEROPERABILITY.

- Standard interface at the lighting layer (DALI2/D4i, AC/DC Power, Sensor input)
- Connect to existing IT infrastructure
- BACNET or Modbus
- Standard interfaces at Cloud layer (GraphQL API)



FLEXIBLE ZONING

- Motion sensor settings managed in the Networked Lighting Control and not on the sensor
- Flexible dimming and hold times to follow facility schedule
- Fewer number of sensors needed
- Up to 60% energy savings
- DALI-2 Motion with FDP-301
 - D4i driver, Programmable settings
 - DALI-2 Sensor Programmable settings

ENERGY SAVINGS VERIFIED

D4I ENERGY REPORTING

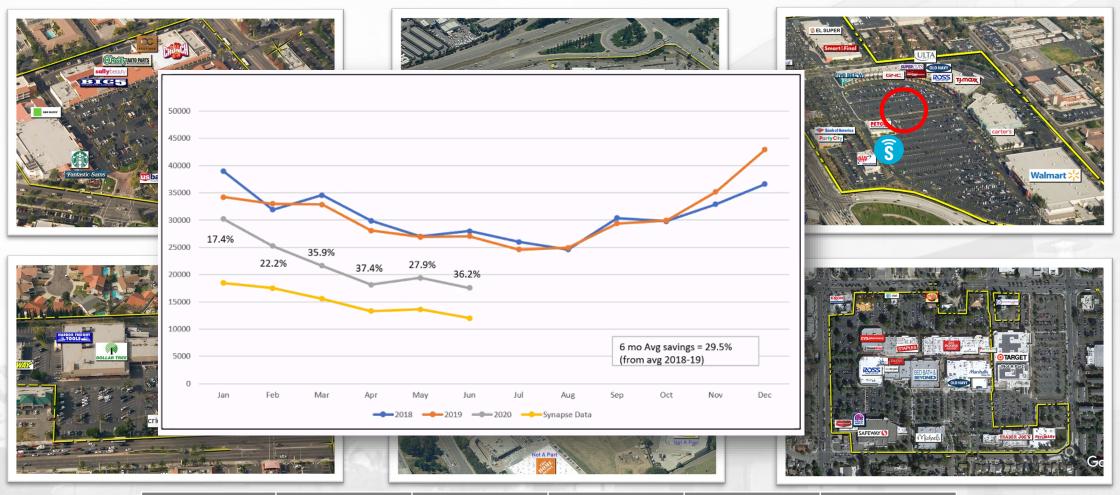
- Compare zone power against baseline
- Generate reports in real-time
- Use data for rebates and controls optimization

■ Untitled 9:36 AM Thu Oct 29

₹ 627

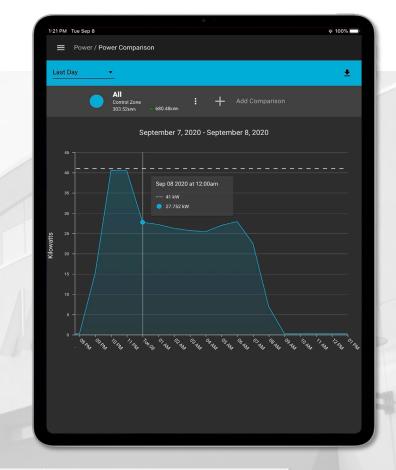
Spreadsheets

export



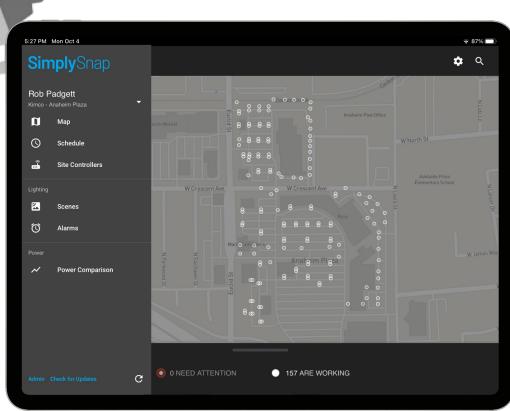
Sheet 1

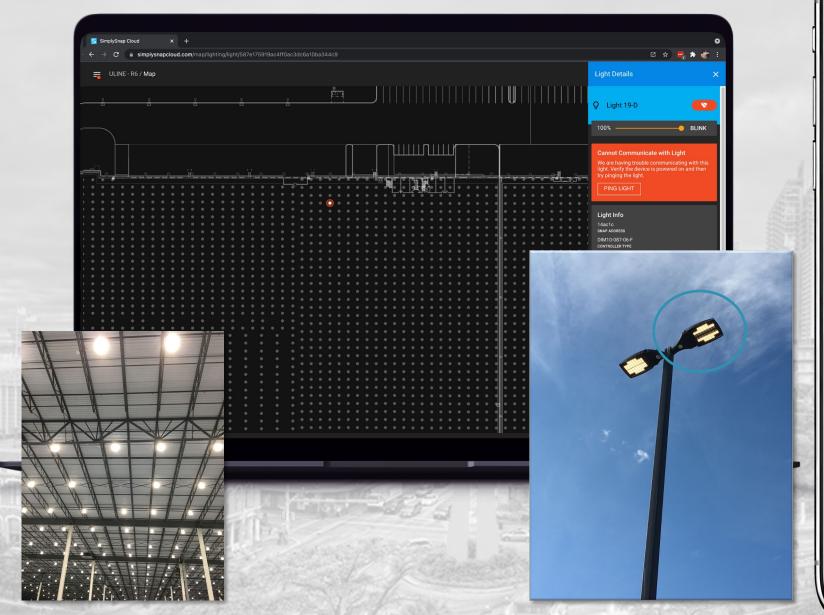

	A	_B export	С	D	E
1	Power Source Name	Power Source Type	Date	Time	Power
2	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	00:00:00	0.003
3	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	01:00:00	0.003
4	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	02:00:00	0.003
5	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	03:00:00	0.003
6	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	04:00:00	0.22175
7	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	05:00:00	0.003
8	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	06:00:00	1.54475
9	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	07:00:00	2.04625
10	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	08:00:00	2.59825
11	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	09:00:00	1.40325
12	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	10:00:00	1.22625
13	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	11:00:00	1.2065
14	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	12:00:00	0.33525
15	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	13:00:00	0.3365
16	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	14:00:00	0.75875
17	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	15:00:00	0.75925
18	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	16:00:00	2.1475
19	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	17:00:00	1.766
20	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	18:00:00	1.539
21	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	19:00:00	1.543
22	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	20:00:00	0.003
23	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	21:00:00	0.003
24	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	22:00:00	0.003
25	Daylight Harvesting	Daylight Harvesting Zone	2020-10-14	23:00:00	0.003
26	Daylight Harvesting	Daylight Harvesting Zone	2020-10-15	00:00:00	0.6705
27	Standard Motion	Control Zone	2020-10-14	00:00:00	0.187
28	Standard Motion	Control Zone	2020-10-14	01:00:00	0.187
29	Standard Motion	Control Zone	2020-10-14	02:00:00	0.187
30	Standard Motion	Control Zone	2020-10-14	03:00:00	0.187
31	Standard Motion	Control Zone	2020-10-14	04:00:00	0.4135
32	Standard Motion	Control Zone	2020-10-14	05:00:00	0.18625
33	Standard Motion	Control Zone	2020-10-14	06:00:00	1.723
34	Standard Motion	Control Zone	2020-10-14	07:00:00	2,191


ENERGY OPTIMIZATION

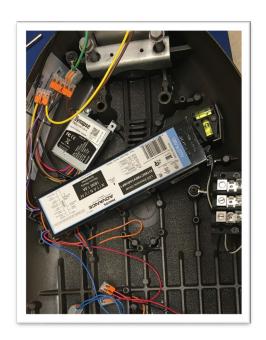
Site A	Site B	Site C	Site D	Site E	Site E
30%	34%	29%	36%	27%	24%

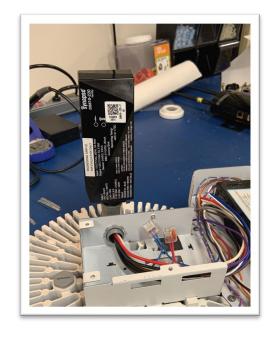
ENERGY OPTIMIZATION




	Site A	Usage (kWh)	Usage (kWh)
1. Baseline with No Oc	ccupancy Detection	397	0%
2. Initial Synapse Depl	oyment	356	10%
3. Improved Occupand	cy Detection Zone	305	23%
4. Optimized Setback		273	31%

MANAGE MULTIPLE LOCATIONS USING DALI-2/D4I LUMINAIRES AND A NETWORKED LIGHTING CONTROL SYSTEM


PROACTIVE MONITORING



DALI-2 / D4i Brings **Plug and Play** to the Lighting Market Mix and Match Luminaires from any OEM with D4i Ready Luminaire.

- 1. Specify DALI-2 / D4i Luminaires
- 2. Pick Controls: Zigbee Bluetooth SNAP Thread
- 3. Mix and Match Luminaires for OEMs

Embedded D4i

Bolt-on 0-10V Retrofit

Twist Lock 0-10V

Zhaga D4i Controller

Questions?

